Lane Emden problems with large exponents and singular Liouville equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liouville theorems for stable Lane-Emden systems and biharmonic problems

We examine the elliptic system given by −∆u = v, −∆v = u, in R , (1) for 1 < p ≤ θ and the fourth order scalar equation ∆u = u, in R , (2) where 1 < θ. We prove various Liouville type theorems for positive stable solutions. For instance we show there are no positive stable solutions of (1) (resp. (2)) provided N ≤ 10 and 2 ≤ p ≤ θ (resp. N ≤ 10 and 1 < θ). Results for higher dimensions are also...

متن کامل

Solving Singular Initial Value Problems of Emden-Fowler and Lane-Emden Type

In this paper, Singular initial value problems are investigated by using Taylor series method. The solutions are constructed in the form of a convergent series. The method is applied to Emden-Fowler and Lane-Emden equations.

متن کامل

Existence of Positive Weak Solutions for Fractional Lane–emden Equations with Prescribed Singular Sets

In this paper, we consider the problem of the existence of positive weak solutions of { (−∆)su = up in Ω u = 0 on Rn\Ω having prescribed isolated interior singularities. We prove that if n n−2s < p < p1 for some critical exponent p1 defined in the introduction which is related to the stability of the singular solution us, and if S is a closed subset of Ω, then there are infinitely many positive...

متن کامل

Separable solutions of quasilinear Lane-Emden equations

For 0 < p − 1 < q and either ǫ = 1 or ǫ = −1, we prove the existence of solutions of −∆pu = ǫu q in a cone CS , with vertex 0 and opening S, vanishing on ∂CS , under the form u(x) = |x|ω( x |x|). The problem reduces to a quasilinear elliptic equation on S and existence is based upon degree theory and homotopy methods. We also obtain a non-existence result in some critical case by an integral ty...

متن کامل

New Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives

In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2014

ISSN: 0021-7824

DOI: 10.1016/j.matpur.2013.06.011